Efek bersepeda terhadap proses penuaan pada lanjut usia: Literatur review

Upik Rahmi, Nova Sylviana, Hanna Goenawan, Setiawan Setiawan

Abstract


Tujuan  dari literatur review ini  studi analisis artikel efek aktifitas fisik bersepeda (cycling) terhadap proses penuaan (aging prosess).  Metode   dengan menggunakan Databased PubMed,  MEDLINE, sciencedirect dan google scholar. Pencarian artikel menggunakan kata kunci berikut: Elderly, physical activity, cycling, aging, aging process. Artikel maupun kajian yang terbit dalam kurun waktu 10 tahun terakhir pada jurnal nasional maupun internasional berbahasa inggris yang dapat diakses secara open access. Hasil  analisis didapatkan 14 artikel tentang pengaruh bersepeda terhadap fisiologis proses penuuan (kognitif, cardiovascular, muskuloskeletal, imunologi dan endokrin). Kesimpulan; Aktifitas fisik dapat memperlambat proses penuuan baik pria maupun wanita, pada analisis studi ini telah terbukti aktifitas fisik dengan beresepeda (cycling) dapat memperlambat proses penuuan secara fisiologis (kognitif, cardiovascular, endokrin, muskulosekeletal dan imunologi).


Copyright © The Author (s) 2021

Journal of Sport Education (JOPE) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Keywords


lanjut usia, bersepeda, kognitif, endokrine, imunologi, muskuloskeletal, elderly, cycling, cognitive, endocrine, imunology, musculoskeletal

Full Text:

PDF

References


Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., Andersen, Z. J., Weinmayr, G., Hoffmann, B., … Hoek, G. (2014). Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet (London, England), 383(9919), 785–795. https://doi.org/10.1016/S0140-6736(13)62158-3

Bloom, D. E., Canning, D., & Lubet, A. (2015). Global Population Aging : Facts , Challenges , Solutions & Perspectives.

Buehler, R., Pucher, J., & Bauman, A. (2020). Physical activity from walking and cycling for daily travel in the United States, 2001–2017: Demographic, socioeconomic, and geographic variation. Journal of Transport and Health, 16(January), 100811. https://doi.org/10.1016/j.jth.2019.100811

Cesari, F., Sofi, F., Corsani, I., Pucci, N., Caporale, R., Abbate, R., … Casini, A. (2009). [22] Effect of a Personalized Physical Activity Programme on Weight Reduction and Endothelial Progenitor Cells in Overweight Subjects. Nutrition, Metabolism and Cardiovascular Diseases, 19, S6. https://doi.org/10.1016/s0939-4753(09)70023-7

Chacko, S. C., Quinzi, F., De Fano, A., Bianco, V., Mussini, E., Berchicci, M., … Di Russo, F. (2020). A single bout of vigorous-intensity aerobic exercise affects reactive, but not proactive cognitive brain functions. International Journal of Psychophysiology, 147, 233–243. https://doi.org/10.1016/j.ijpsycho.2019.12.003

Chu, C.-H., Alderman, B. L., Wei, G.-X., & Chang, Y.-K. (2015). Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task. Journal of Sport and Health Science, 4(1), 73–81. https://doi.org/https://doi.org/10.1016/j.jshs.2014.12.002

Chu, C.-H., Chen, A.-G., Hung, T.-M., Wang, C.-C., & Chang, Y.-K. (2015). Exercise and fitness modulate cognitive function in older adults. Psychology and Aging, 30(4), 842–848. https://doi.org/10.1037/pag0000047

Danese, E., Lippi, G., Sanchis-Gomar, F., Brocco, G., Rizzo, M., Banach, M., & Montagnana, M. (2017). Physical Exercise and DNA Injury: Good or Evil? In Advances in Clinical Chemistry (1st ed., Vol. 81). https://doi.org/10.1016/bs.acc.2017.01.005

Durand, M. J., & Gutterman, D. D. (2014). Exercise and vascular function: How much is too much? Canadian Journal of Physiology and Pharmacology, 92(7), 551–557. https://doi.org/10.1139/cjpp-2013-0486

Eckstrom, E., Neukam, S., Kalin, L., & Wright, J. (2020). Physical Activity and Healthy Aging. Clinics in Geriatric Medicine, 36(4), 671–683. https://doi.org/10.1016/j.cger.2020.06.009

Elliott, B. T., Herbert, P., Sculthorpe, N., Grace, F. M., Stratton, D., & Hayes, L. D. (2017). Lifelong exercise, but not short-term high-intensity interval training, increases GDF11, a marker of successful aging: a preliminary investigation. Physiological Reports, 5(13). https://doi.org/10.14814/phy2.13343

Endemann, D. H., & Schiffrin, E. L. (2004). Endothelial dysfunction. Journal of the American Society of Nephrology, 15(8), 1983–1992. https://doi.org/10.1097/01.ASN.0000132474.50966.DA

Erickson, K. I., & Kramer, A. F. (2009). Aerobic exercise effects on cognitive and neural plasticity in older adults. British Journal of Sports Medicine, 43(1), 22–24. https://doi.org/10.1136/bjsm.2008.052498

Fernandez-Egea, E., Scoriels, L., Theegala, S., Giro, M., Ozanne, S. E., Burling, K., & Jones, P. B. (2013). Cannabis use is associated with increased CCL11 plasma levels in young healthy volunteers. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 46, 25–28. https://doi.org/10.1016/j.pnpbp.2013.06.011

Frost, N. J., Weinborn, M., Gignac, G. E., Rainey-Smith, S. R., Markovic, S., Gordon, N., … Brown, B. M. (2020). A Randomized Controlled Trial of High-Intensity Exercise and Executive Functioning in Cognitively Normal Older Adults. American Journal of Geriatric Psychiatry. https://doi.org/10.1016/j.jagp.2020.06.015

Gardner, A. W., Montgomery, P. S., Zhao, Y. D., Ungvari, Z., Csiszar, A., & Sonntag, W. E. (2018). Endothelial Cell Inflammation and Antioxidant Capacity are Associated With 6-Minute Walk Performance in Patients With Symptomatic Peripheral Artery Disease. Angiology, 69(5), 416–423. https://doi.org/10.1177/0003319717726934

Gates, N., Fiatarone Singh, M. A., Sachdev, P. S., & Valenzuela, M. (2013). The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. The American Journal of Geriatric Psychiatry : Official Journal of the American Association for Geriatric Psychiatry, 21(11), 1086–1097. https://doi.org/10.1016/j.jagp.2013.02.018

Griffin, É. W., Mullally, S., Foley, C., Warmington, S. A., O’Mara, S. M., & Kelly, Á. M. (2011a). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology and Behavior, 104(5), 934–941. https://doi.org/10.1016/j.physbeh.2011.06.005

Griffin, É. W., Mullally, S., Foley, C., Warmington, S. A., O’Mara, S. M., & Kelly, Á. M. (2011b). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior, 104(5), 934–941. https://doi.org/https://doi.org/10.1016/j.physbeh.2011.06.005

Hammar, M., & Östgren, C. J. (2013). Healthy aging and age-adjusted nutrition and physical fitness. Best Practice & Research Clinical Obstetrics & Gynaecology, 27(5), 741–752. https://doi.org/https://doi.org/10.1016/j.bpobgyn.2013.01.004

Haynes, A., Naylor, L. H., Carter, H. H., Spence, A. L., Robey, E., Cox, K. L., … Green, D. J. (2020). Land-walking vs. water-walking interventions in older adults: Effects on aerobic fitness. Journal of Sport and Health Science, 9(3), 274–282. https://doi.org/10.1016/j.jshs.2019.11.005

He, W., Goodkind, D., & Kowal, P. (2016). An Aging World : 2015 International Population Reports. Aging, (March), 165.

Hill, J. M., Zalos, G., Halcox, J. P. J., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., & Finkel, T. (2003). Circulating Endothelial Progenitor Cells, Vascular Function, and Cardiovascular Risk. Obstetrical & Gynecological Survey, 58(7), 467–468. https://doi.org/10.1097/01.ogx.0000074096.62998.d7

Hill, M. D., Gibson, A. M., Wagerman, S. A., Flores, E. D., & Kelly, L. A. (2019). The effects of aerobic and resistance exercise on state anxiety and cognitive function. Science and Sports, 34(4), 216–221. https://doi.org/10.1016/j.scispo.2018.09.004

Hooshmand-Moghadam, B., Eskandari, M., Golestani, F., Rezae, S., Mahmoudi, N., & Gaeini, A. A. (2020). The effect of 12-week resistance exercise training on serum levels of cellular aging process parameters in elderly men. Experimental Gerontology, 141(June), 111090. https://doi.org/10.1016/j.exger.2020.111090

Hötting, K., Holzschneider, K., Stenzel, A., Wolbers, T., & Röder, B. (2013). Effects of a cognitive training on spatial learning and associated functional brain activations. BMC Neuroscience, 14, 73. https://doi.org/10.1186/1471-2202-14-73

Hötting, K., Reich, B., Holzschneider, K., Kauschke, K., Schmidt, T., Reer, R., … Röder, B. (2012a). Differential cognitive effects of cycling versus stretching/coordination training in middle-aged adults. Health Psychology : Official Journal of the Division of Health Psychology, American Psychological Association, 31(2), 145–155. https://doi.org/10.1037/a0025371

Hötting, K., Reich, B., Holzschneider, K., Kauschke, K., Schmidt, T., Reer, R., … Röder, B. (2012b). Differential cognitive effects of cycling versus stretching/coordination training in middle-aged adults. Health Psychology, 31(2), 145–155. https://doi.org/10.1037/a0025371

Hough, J., Corney, R., Kouris, A., & Gleeson, M. (2013). Salivary cortisol and testosterone responses to high-intensity cycling before and after an 11-day intensified training period. Journal of Sports Sciences, 31(14), 1614–1623. https://doi.org/10.1080/02640414.2013.792952

Hyodo, K., Dan, I., Kyutoku, Y., Suwabe, K., Byun, K., Ochi, G., … Soya, H. (2016). The association between aerobic fitness and cognitive function in older men mediated by frontal lateralization. NeuroImage, 125, 291–300. https://doi.org/10.1016/j.neuroimage.2015.09.062

Ji, N., Zhao, W., Qian, H., Yan, X., Zong, R., Zhang, Y., & Lao, K. (2019). Aerobic exercise promotes the expression of ERCC1 to prolong lifespan: A new possible mechanism. Medical Hypotheses, 122, 22–25. https://doi.org/10.1016/j.mehy.2018.10.012

Karp, A., Paillard-Borg, S., Wang, H. X., Silverstein, M., Winblad, B., & Fratiglioni, L. (2006). Mental, physical and social components in leisure activities equally contribute to decrease dementia risk. Dementia and Geriatric Cognitive Disorders, 21(2), 65–73. https://doi.org/10.1159/000089919

Kraemer, W. J., Fragala, M. S., Watson, G., Volek, J. S., Rubin, M. R., French, D. N., … Evans, D. S. (2008). Hormonal responses to a 160-km race across frozen Alaska. British Journal of Sports Medicine, 42(2), 116–120. https://doi.org/10.1136/bjsm.2007.035535

Leyland, L. A., Spencer, B., Beale, N., Jones, T., & van Reekum, C. M. (2019). The effect of cycling on cognitive function and well-being in older adults. PLoS ONE, 14(2), 1–17. https://doi.org/10.1371/journal.pone.0211779

Leyland, L., & Spencer, I. (2019). Pengaruh bersepeda pada fungsi kognitif dan kesejahteraan pada orang dewasa yang lebih tua. 1–17.

Maass, A., Düzel, S., Brigadski, T., Goerke, M., Becke, A., Sobieray, U., … Düzel, E. (2016). Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. NeuroImage, 131, 142–154. https://doi.org/10.1016/j.neuroimage.2015.10.084

Maeda, S., Tanabe, T., Miyauchi, T., Otsuki, T., Sugawara, J., Iemitsu, M., … Matsuda, M. (2003). Aerobic exercise training reduces plasma endothelin-1 concentration in older women. Journal of Applied Physiology, 95(1), 336–341. https://doi.org/10.1152/japplphysiol.01016.2002

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734

Molanouri Shamsi, M., Najedi, S., Hassan, Z. M., Isanejad, A., & Mahdavi, M. (2017). Short term exercise training enhances cell-mediated responses to HSV-1 vaccine in mice. Microbial Pathogenesis, 110, 457–463. https://doi.org/10.1016/j.micpath.2017.07.035

Navaratnarajah, A., & Jackson, S. H. D. (2013). The physiology of ageing. Medicine (United Kingdom), 41(1), 5–8. https://doi.org/10.1016/j.mpmed.2012.10.009

Nehra, S., Bhardwaj, V., Bansal, A., & Saraswat, D. (2017). Combinatorial therapy of exercise-preconditioning and nanocurcumin formulation supplementation improves cardiac adaptation under hypobaric hypoxia. Journal of Basic and Clinical Physiology and Pharmacology, 28(5), 443–453. https://doi.org/10.1515/jbcpp-2016-0134

Palmowski, J., Reichel, T., Boßlau, T. K., & Krüger, K. (2020). The effect of acute running and cycling exercise on T cell apoptosis in humans: A systematic review. Scandinavian Journal of Immunology, 91(2), 1–11. https://doi.org/10.1111/sji.12834

Pan, M. H., Lai, C. S., Tsai, M. L., Wu, J. C., & Ho, C. T. (2012). Molecular mechanisms for anti-aging by natural dietary compounds. Molecular Nutrition and Food Research, 56(1), 88–115. https://doi.org/10.1002/mnfr.201100509

Patil, S. G., Patil, S. S., Aithala, M. R., & Das, K. K. (2017). Comparison of yoga and walking-exercise on cardiac time intervals as a measure of cardiac function in elderly with increased pulse pressure. Indian Heart Journal, 69(4), 485–490. https://doi.org/https://doi.org/10.1016/j.ihj.2017.02.006

Pietrelli, A., Matković, L., Vacotto, M., Lopez-Costa, J. J., Basso, N., & Brusco, A. (2018). Aerobic exercise upregulates the BDNF-Serotonin systems and improves the cognitive function in rats. Neurobiology of Learning and Memory, 155, 528–542. https://doi.org/10.1016/j.nlm.2018.05.007

Portney, L. G. (2020). Foundations of Clinical Research: Applications to Evidence-Based Practice. In Foundations of Clinical Research: Applications to Evidence-Based Practice, 4e. Retrieved from http://fadavispt.mhmedical.com/content.aspx?aid=1172486561

Pothier, K., Gagnon, C., Fraser, S. A., Lussier, M., Desjardins-Crépeau, L., Berryman, N., … Bherer, L. (2018). A comparison of the impact of physical exercise, cognitive training and combined intervention on spontaneous walking speed in older adults. Aging Clinical and Experimental Research, 30(8), 921–925. https://doi.org/10.1007/s40520-017-0878-5

Raichlen, D. A., Bharadwaj, P. K., Nguyen, L. A., Franchetti, M. K., Zigman, E. K., Solorio, A. R., & Alexander, G. E. (2020). Effects of simultaneous cognitive and aerobic exercise training on dual-task walking performance in healthy older adults: results from a pilot randomized controlled trial. BMC Geriatrics, 20(1), 83. https://doi.org/10.1186/s12877-020-1484-5

Rea, I. M. (2017). Towards ageing well: Use it or lose it: Exercise, epigenetics and cognition. Biogerontology, 18(4), 679–691. https://doi.org/10.1007/s10522-017-9719-3

Rodrigues-Krause, J., Farinha, J. B., Krause, M., & Reischak-Oliveira, Á. (2016). Effects of dance interventions on cardiovascular risk with ageing: Systematic review and meta-analysis. Complementary Therapies in Medicine, 29, 16–28. https://doi.org/10.1016/j.ctim.2016.09.004

Rodrigues-Krause, J., Farinha, J. B., Ramis, T. R., Macedo, R. C. O., Boeno, F. P., dos Santos, G. C., … Reischak-Oliveira, A. (2018). Effects of dancing compared to walking on cardiovascular risk and functional capacity of older women: A randomized controlled trial. Experimental Gerontology, 114, 67–77. https://doi.org/https://doi.org/10.1016/j.exger.2018.10.015

Rodrigues, T. B., & Ballesteros, P. (2007). Journal of Neuroscience Research 85:3244–3253 (2007). Journal of Neuroscience Research, 3253(April), 3244–3253. https://doi.org/10.1002/jnr

Ross, M., Ingram, L., Taylor, G., Malone, E., Simpson, R. J., West, D., & Florida-James, G. (2018). Older men display elevated levels of senescence-associated exercise-responsive CD28null angiogenic T cells compared with younger men. Physiological Reports, 6(12), 1–11. https://doi.org/10.14814/phy2.13697

Sarikaya, B., Dursun, A. D., Taylan Deveden, E. Y., & Pinar, L. (2017). Interleukin-6 and hepcidin expression changes in cardiac tissue of long-term trained and untrained rats after exhaustive exercise. Turkish Journal of Medical Sciences, 47(6), 1940–1946. https://doi.org/10.3906/sag-1703-73

Shaw, D. M., Merien, F., Braakhuis, A., & Dulson, D. (2018). T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine, 104(October 2017), 136–142. https://doi.org/10.1016/j.cyto.2017.10.001

Silva, P., Lott, R., Wickrama, K. a S., Mota, J., & Welk, G. (2011). . This article appears here in its accepted , peer-reviewed form ; it has not been copy edited , proofed , or formatted by the publisher . Psychosoci. International Journal of Sport Nutrition and Exercise Metabolism, 1–44.

Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J. W., Kiens, B., & Nielsen, J. B. (2014). Acute exercise improves motor memory: exploring potential biomarkers. Neurobiology of Learning and Memory, 116, 46–58. https://doi.org/10.1016/j.nlm.2014.08.004

Tascón, L., Boccia, M., Piccardi, L., & Cimadevilla, J. M. (2017). Differences in spatial memory recognition due to cognitive style. Frontiers in Pharmacology, 8(AUG), 1–7. https://doi.org/10.3389/fphar.2017.00550

Torbeyns, T., De Geus, B., Bailey, S., De Pauw, K., Decroix, L., Van Cutsem, J., & Meeusen, R. (2016). Cycling on a bike desk positively influences cognitive performance. PLoS ONE, 11(11), 1–14. https://doi.org/10.1371/journal.pone.0165510

Turner, J. E., & Brum, P. C. (2017). Does Regular Exercise Counter T Cell Immunosenescence Reducing the Risk of Developing Cancer and Promoting Successful Treatment of Malignancies? Oxidative Medicine and Cellular Longevity, 2017. https://doi.org/10.1155/2017/4234765

Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., … Dimmeler, S. (2001). Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circulation Research, 89(1), 1–8. https://doi.org/10.1161/hh1301.093953

Vingren, J. L., Budnar, R. G., McKenzie, A. L., Duplanty, A. A., Luk, H. Y., Levitt, D. E., & Armstrong, L. E. (2016). The acute testosterone, growth hormone, cortisol and interleukin-6 response to 164-km road cycling in a hot environment. Journal of Sports Sciences, 34(8), 694–699. https://doi.org/10.1080/02640414.2015.1068440

Wallace, R. G., Twomey, L. C., Custaud, M. A., Turner, J. D., Moyna, N., Cummins, P. M., & Murphy, R. P. (2018). The role of epigenetics in cardiovascular health and ageing: A focus on physical activity and nutrition. Mechanisms of Ageing and Development, 174, 76–85. https://doi.org/10.1016/j.mad.2017.11.013

Weiss, L. R., Venezia, A. C., & Smith, J. C. (2019). A single bout of hard RPE-based cycling exercise increases salivary alpha-amylase. Physiology and Behavior, 208(May), 112555. https://doi.org/10.1016/j.physbeh.2019.05.016

Whiteman, A. S., Young, D. E., He, X., Chen, T. C., Wagenaar, R. C., Stern, C. E., & Schon, K. (2014). Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behavioural Brain Research, 259, 302–312. https://doi.org/10.1016/j.bbr.2013.11.023

Woost, L., Bazin, P. L., Taubert, M., Trampel, R., Tardif, C. L., Garthe, A., … Klein, T. A. (2018). Physical Exercise and Spatial Training: A Longitudinal Study of Effects on Cognition, Growth Factors, and Hippocampal Plasticity. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-19993-9

Yaffe, K., Fiocco, A. J., Lindquist, K., Vittinghoff, E., Simonsick, E. M., Newman, A. B., … Harris, T. B. (2009). Predictors of maintaining cognitive function in older adults: The Health ABC Study. Neurology, 72(23), 2029–2035. https://doi.org/10.1212/WNL.0b013e3181a92c36

Yamazaki, Y., Yamashiro, K., Onishi, H., Otsuru, N., Kojima, S., Saito, K., & Sato, D. (2020). Modulation of inhibitory function in the primary somatosensory cortex and temporal discrimination threshold induced by acute aerobic exercise. Behavioural Brain Research, 377(September 2019), 112253. https://doi.org/10.1016/j.bbr.2019.112253




DOI: http://dx.doi.org/10.31258/jope.4.1.64-76

Refbacks

  • There are currently no refbacks.